Recently, unsupervised learning has made impressive progress on various tasks. Despite the dominance of discriminative models, increasing attention is drawn to representations learned by generative models and in particular, Generative Adversarial Networks (GANs). Previous works on the interpretation of GANs reveal that GANs encode semantics in feature maps in a linearly separable form. In this work, we further find that GAN's features can be well clustered with the linear separability assumption. We propose a novel clustering algorithm, named KLiSH, which leverages the linear separability to cluster GAN's features. KLiSH succeeds in extracting fine-grained semantics of GANs trained on datasets of various objects, e.g., car, portrait, animals, and so on. With KLiSH, we can sample images from GANs along with their segmentation masks and synthesize paired image-segmentation datasets. Using the synthesized datasets, we enable two downstream applications. First, we train semantic segmentation networks on these datasets and test them on real images, realizing unsupervised semantic segmentation. Second, we train image-to-image translation networks on the synthesized datasets, enabling semantic-conditional image synthesis without human annotations.
translated by 谷歌翻译
深度学习(DL)的快速增长和部署目睹了新兴的隐私和安全问题。为了减轻这些问题,已经讨论了安全的多方计算(MPC),以实现隐私保护DL计算。在实践中,它们通常是在很高的计算和沟通开销中,并有可能禁止其在大规模系统中的受欢迎程度。两种正交研究趋势吸引了人们对安全深度学习的能源效率的巨大兴趣,即MPC比较方案的高架降低和硬件加速度。但是,他们要么达到较低的减少比率,因此由于计算和通信节省有限而遭受了高潜伏期,或者是渴望的,因为现有的作品主要集中在CPU和GPU等一般计算平台上。在这项工作中,作为第一次尝试,我们通过将加密构件构建块的硬件延迟整合到DNN损耗功能中,以实现高能量效率,开发了一个系统的polympcnet,以减少MPC比较协议和硬件加速的联合额外降低的系统框架Polympcnet。和安全保证。我们的关键设计原理不是在DNN进行良好训练之后(通过删除或删除某些非物质操作员)训练(通过删除或删除某些非物质操作员)之后检查模型敏感性,而是要准确地执行DNN设计中的假设 - 培训DNN既是DNN都硬件有效且安全,同时逃脱了当地的最小值和鞍点并保持高精度。更具体地说,我们提出了通过多项式激活初始化方法直接提出的加密硬件友好的可训练多项式激活功能,以替代昂贵的2P-RELU操作员。我们开发了一个密码硬件调度程序和现场可编程门阵列(FPGA)平台的相应性能模型。
translated by 谷歌翻译
在本文中,我们提出了一个称为SDFE-LV的大规模,多源和不受约束的数据库,用于发现长视频中完整动态面部表达的发作和偏移帧,这被称为动态面部表情斑点的主题(DFE)和许多面部表达分析任务的重要步骤。具体而言,SDFE-LV由1,191个长视频组成,每个视频包含一个或多个完整的动态面部表情。此外,在相应的长视频中,每个完整的动态面部表达都被10次训练有素的注释者独立标记了五次。据我们所知,SDFE-LV是DFES任务的第一个无限制的大规模数据库,其长期视频是从多个现实世界/密切现实世界中的媒体来源收集的,例如电视采访,纪录片,电影和电影,以及我们媒体短视频。因此,在实践中,SDFE-LV数据库上的DFE任务将遇到许多困难,例如头部姿势变化,遮挡和照明。我们还通过使用许多最新的深度发现方法,从不同角度提供了全面的基准评估,因此对DFE感兴趣的研究人员可以快速而轻松地开始。最后,通过有关实验评估结果的深入讨论,我们试图指出几个有意义的方向来处理DFES任务,并希望将来DFE可以更好地进步。此外,SDFE-LV将仅尽快自由发布供学术使用。
translated by 谷歌翻译
大多数现有的语义分割方法都以图像级类标签作为监督,高度依赖于从标准分类网络生成的初始类激活图(CAM)。在本文中,提出了一种新颖的“渐进贴片学习”方法,以改善分类的局部细节提取,从而更好地覆盖整个对象的凸轮,而不仅仅是在常规分类模型中获得的CAM中的最歧视区域。 “补丁学习”将特征映射破坏成贴片,并在最终聚合之前并行独立处理每个本地贴片。这样的机制强迫网络从分散的歧视性本地部分中找到弱信息,从而提高了本地细节的敏感性。 “渐进的补丁学习”进一步将特征破坏和补丁学习扩展到多层粒度。与多阶段优化策略合作,这种“渐进的补丁学习”机制隐式地为模型提供了跨不同位置粒状性的特征提取能力。作为隐式多粒性渐进式融合方法的替代方案,我们还提出了一种明确的方法,以同时将单个模型中不同粒度的特征融合,从而进一步增强了完整对象覆盖的凸轮质量。我们提出的方法在Pascal VOC 2012数据集上取得了出色的性能,例如,测试集中有69.6 $%miou),它超过了大多数现有的弱监督语义细分方法。代码将在此处公开提供,https://github.com/tyroneli/ppl_wsss。
translated by 谷歌翻译
生成精确的类感知的伪基真实,也就是类激活图(CAM),对于弱监督的语义分割至关重要。原始CAM方法通常会产生不完整和不准确的定位图。为了解决这个问题,本文提出了基于可变形卷积中的偏移学习的扩展和收缩方案,以依次改善两个各个阶段中定位对象的回忆和精度。在扩展阶段,在可变形卷积层中的偏移学习分支,称为“扩展采样器”,寻求采样越来越小的判别对象区域,这是由逆监督信号驱动的,从而最大程度地提高了图像级分类损失。然后在收缩阶段逐渐将位置更完整的物体逐渐缩小到最终对象区域。在收缩阶段,引入了另一个可变形卷积层的偏移学习分支,称为“收缩采样器”,以排除在扩展阶段参加的假积极背景区域,以提高定位图的精度。我们在Pascal VOC 2012和MS Coco 2014上进行了各种实验,以很好地证明了我们方法比其他最先进的方法对弱监督语义分割的优越性。代码将在此处公开提供,https://github.com/tyroneli/esol_wsss。
translated by 谷歌翻译
多年来,Yolo系列一直是有效对象检测的事实上的行业级别标准。尤洛社区(Yolo Community)绝大多数繁荣,以丰富其在众多硬件平台和丰富场景中的使用。在这份技术报告中,我们努力将其限制推向新的水平,以坚定不移的行业应用心态前进。考虑到对真实环境中速度和准确性的多种要求,我们广泛研究了行业或学术界的最新对象检测进步。具体而言,我们从最近的网络设计,培训策略,测试技术,量化和优化方法中大量吸收了思想。最重要的是,我们整合了思想和实践,以在各种规模上建立一套可供部署的网络,以适应多元化的用例。在Yolo作者的慷慨许可下,我们将其命名为Yolov6。我们还向用户和贡献者表示热烈欢迎,以进一步增强。为了了解性能,我们的Yolov6-N在NVIDIA TESLA T4 GPU上以1234 fps的吞吐量在可可数据集上击中35.9%的AP。 Yolov6-S在495 fps处的43.5%AP罢工,在相同规模〜(Yolov5-S,Yolox-S和Ppyoloe-S)上超过其他主流探测器。我们的量化版本的Yolov6-S甚至在869 fps中带来了新的43.3%AP。此外,与其他推理速度相似的检测器相比,Yolov6-m/L的精度性能(即49.5%/52.3%)更好。我们仔细进行了实验以验证每个组件的有效性。我们的代码可在https://github.com/meituan/yolov6上提供。
translated by 谷歌翻译
恶意建筑提取已成为对深神经网络(DNN)安全性的关键关注。作为辩护,提议建筑混淆,以将受害者DNN改造为不同的建筑。尽管如此,我们观察到,只有提取混淆的DNN结构,对手仍然可以重新训练具有高性能(例如精度)的替代模型,从而使混淆技术无效。为了减轻这种探索不足的漏洞,我们提出了Obfunas,将DNN体系结构混淆转换为神经体系结构搜索(NAS)问题。 Obfunas结合使用具有功能的混淆策略,确保混淆的DNN体系结构只能达到比受害者更低的精度。我们使用NAS-Bench-101和NAS Bench-301(Nas-Bench-101和NAS-Bench-301)的开源架构数据集验证了Obfunas的性能。实验结果表明,在给定的Flops约束中,Obfunas可以成功地找到受害者模型的最佳掩码,导致对只有0.14倍FLOPS开销的攻击者的推理准确性降解高达2.6%。该代码可在以下网址获得:https://github.com/tongzhou0101/obfunas。
translated by 谷歌翻译
大规模的预训练的语言模型在自然语言生成任务上取得了巨大的成功。但是,很难控制预先训练的语言模型来生成具有所需属性的句子,例如主题和情感等。最近,贝叶斯可控的语言模型(BCLM)已被证明在可控制的语言生成中有效。 BCLM并没有微调预训练的语言模型的参数,而是使用外部歧视器来指导预训练的语言模型的生成。但是,BCLMS训练和推断之间的不匹配限制了模型的性能。为了解决这个问题,在这项工作中,我们为可控语言生成提出了一个“双子座歧视者”,以减轻小计算成本的不匹配问题。我们在两个可控的语言生成任务上测试了我们的方法:情感控制和主题控制。在这两项任务上,我们的方法都达到了新的最先进的结果,从而可以自动评估。
translated by 谷歌翻译
我们研究了在联合环境中从积极和未标记的(PU)数据中学习的问题,由于资源和时间的限制,每个客户仅标记其数据集的一小部分。与传统的PU学习中的设置不同,负面类是由单个类组成的,而由客户在联合设置中无法识别的否定样本可能来自客户未知的多个类。因此,在这种情况下,几乎无法应用现有的PU学习方法。为了解决这个问题,我们提出了一个新颖的框架,即使用正面和未标记的数据(FEDPU)联合学习,以通过利用其他客户的标记数据来最大程度地降低多个负面类别的预期风险。我们理论上分析了拟议的FedPU的概括结合。经验实验表明,FedPU比常规监督和半监督联盟的学习方法取得更好的性能。
translated by 谷歌翻译
Audio-visual approaches involving visual inputs have laid the foundation for recent progress in speech separation. However, the optimization of the concurrent usage of auditory and visual inputs is still an active research area. Inspired by the cortico-thalamo-cortical circuit, in which the sensory processing mechanisms of different modalities modulate one another via the non-lemniscal sensory thalamus, we propose a novel cortico-thalamo-cortical neural network (CTCNet) for audio-visual speech separation (AVSS). First, the CTCNet learns hierarchical auditory and visual representations in a bottom-up manner in separate auditory and visual subnetworks, mimicking the functions of the auditory and visual cortical areas. Then, inspired by the large number of connections between cortical regions and the thalamus, the model fuses the auditory and visual information in a thalamic subnetwork through top-down connections. Finally, the model transmits this fused information back to the auditory and visual subnetworks, and the above process is repeated several times. The results of experiments on three speech separation benchmark datasets show that CTCNet remarkably outperforms existing AVSS methods with considerablely fewer parameters. These results suggest that mimicking the anatomical connectome of the mammalian brain has great potential for advancing the development of deep neural networks. Project repo is https://github.com/JusperLee/CTCNet.
translated by 谷歌翻译